EFFICIENT GENERAL LINEAR METHODS OF HIGH ORDER WITH INHERENT QUADRATIC STABILITY
نویسندگان
چکیده
منابع مشابه
General linear methods with inherent Runge-Kutta stability
General linear methods were derived approximately thirty years ago as a unifying approach for the study of consistency, stability and convergence of the Runge-Kutta and the linear multistep methods. Their discovery opened the possibility of obtaining essentially new methods which were neither Runge-Kutta nor linear multistep methods nor slight variations of these methods. It was hoped that gene...
متن کاملHigh Order Implicit-Explicit General Linear Methods with Optimized Stability Regions
In the numerical solution of partial differential equations using a method-of-lines approach, the availability of high order spatial discretization schemes motivates the development of sophisticated high order time integration methods. For multiphysics problems with both stiff and non-stiff terms implicit-explicit (IMEX) time stepping methods attempt to combine the lower cost advantage of expli...
متن کاملOptimization-based search for Nordsieck methods of high order with quadratic stability
We describe the search for explicit general linear methods in Nordsieck form for which the stability function has only two nonzero roots. This search is based on state-of-the-art optimization software. Examples of methods found in this way are given for order p = 5, p = 6, and p = 7.
متن کاملOn the order of general linear methods
General linear (GL) methods are numerical algorithms used to solve ODEs. The standard order conditions analysis involves the GL matrix itself and a starting procedure; however, a finishing method (F) is required to extract the actual ODE solution. The standard order analysis and stability are sufficient for the convergence of any GL method. Nonetheless, using a simple GL scheme, we show that th...
متن کاملOrder conditions for general linear methods
We describe the derivation of order conditions, without restrictions on stage order, for general linear methods for ordinary differential equations. This derivation is based on the extension of Albrecht approach proposed in the context of Runge-Kutta and composite and linear cyclic methods. This approach was generalized by Jackiewicz and Tracogna to two-step Runge-Kutta methods, by Jackiewicz a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Modelling and Analysis
سال: 2014
ISSN: 1392-6292,1648-3510
DOI: 10.3846/13926292.2014.955893